
	 © Henry Stewart Publications 2050-0076 (2017)  Vol. 1, 1 1–12  Journal of Web Management and Marketing	 1

Why single sign-on is so
expensive and what you can
do to reduce costs
Received (in revised form): 9th February, 2017

Jessica D. Moore
is an Engagement Manager at Fig Leaf Software, with 18 years of expertise in user experience design and a focus on
usability and accessibility. She has presented at conferences for the Usability Professionals’ Association and ASIS&T, and
at Washington D.C.’s Mobile UX Camp. She has served as a product owner on several agile development teams tasked
with implementing SSO and data integrations, across different CMS and third-party systems. She has an MFA in Art and
Visual Technology from George Mason University, and a BA in English from Grinnell College. When she’s not resolving
issues with SSO integrations or helping design websites, she works at painting and writing, and enjoys sunsets from her
canoe.

Vlad Oprica
is a Lead Architect and Senior Developer at Fig Leaf Software. He has worked as a developer for nine years, during which
he built numerous sites using several programming frameworks, primarily ASP.NET and JavaScript. He also has a strong
background in front-end development and design, using HTML, CSS and Photoshop. He has extensive experience with
content management systems such as Ektron, Episerver and Sitefinity, and has delivered highly customised website
functionality and features to many clients over the years. He is also well-versed in third-party data integrations involving
AMS and CRM systems, such as NetForum, Membersuite and Microsoft Dynamics. During his tenure at Fig Leaf Software,
he also acquired certifications in SharePoint administration and Agile Scrum methodology. In his spare time, he enjoys
keeping up with the latest web technologies, working on creative visual designs, learning foreign languages and playing
tennis.

Dave Gallerizzo
is the CEO of Fig Leaf Software, a leading digital agency with an international customer base. He also serves as a
member of the Board of Directors. His prior responsibility was as Vice President of Fig Leaf Software’s Consulting
Services division. This division was responsible for all aspects of the company’s services-based practices. During
his tenure as head of Consulting Services, prior to his assumption of the position of CEO, the division saw yearly
substantial growth over a seven-year period. He maintains enterprise certifications on the Drupal, Adobe Coldfusion,
Amazon AWS, Google Apps, Google Maps and Google Search Appliance platforms and continues to teach a variety of
technical classes on a regular basis, including: Acquia Site Building with Drupal, Acquia Drupal Layout and Theming,
PHP for Drupal Developers, Acquia Drupal Module Development, Advanced ColdFusion Development, Administering
ColdFusion Servers, Google Apps Deployment, Google Search Appliance Deployment, jQuery and Developing for the
CommonSpot CMS platform. His academic credentials include a Bachelors of Science in Computer Science from the
University of Maryland, with minors in Economics and Mathematics. He retired with 24 years of service from the United
States Marines Corps, reserve component, in 2011. During his tenure of service he held enlisted and officer ranks,
in both the Light Armored Reconnaissance and Combat Engineer fields, and obtained a final rank of Chief Warrant
Officer 2.

Abstract

Implementing SSO is often expensive, and depending on your technical prowess,
it may be hard to understand why. In this paper, we’ll explain the basic technical
challenge of SSO, the differences between a simple and a complex integration,
and how to achieve what your business needs with the least cost and the fewest
headaches. We’ll focus on issues around developing custom single sign-on solutions
for public websites and intranets, which presents different challenges from other
scenarios such as SSO for internal business operations. We discuss the intersection
of security and analytics with SSO. Finally, we offer useful tips derived from our

Jessica D. Moore
Fig Leaf Software,
1400 16th Street NW, Suite 450,
Washington, DC 20036,
USA

Tel: +1 202 810 6418;
E-mail:
jmoore@figleaf.com

Vlad Oprica
Fig Leaf Software,
1400 16th Street NW, Suite 450,
Washington, DC 20036,
USA

Tel: +1 202 797 7711;
E-mail:
voprica@figleaf.com

Dave Gallerizzo
Fig Leaf Software,
1400 16th Street NW, Suite 450,
Washington, DC 20036,
USA

Tel: +1 202 230 8922;
E-mail:
dgallerizzo@figleaf.com

Vlad Oprica

Dave Gallerizzo

Jessica D. Moore

Oprica_JWMM_V1-1-1.indd 1 22/03/17 10:26 am

Why single sign-on is so expensive and what you can do to reduce costs

2	 Journal of Web Management and Marketing  Vol. 1, 1 1–12  © Henry Stewart Publications 2050-0076 (2017)

experience with SSO integration, which you can use as a checklist to guide you
through a successful SSO project.

Keywords

SSO, single sign-on, integration, login, authentication, cost

INTRODUCTION

Broadly speaking, single sign-on (SSO)
is a means for simplifying authentication
for end users. Both website visitors and
website owners want SSO for their websites.
SSO offers a simpler user experience: for
customers, there are fewer usernames and
passwords to remember and maintain,
and there are less ‘walls’ requiring a login.
For businesses, this translates into higher
conversion ratios for important transactions,
and an enhanced experience of the online
brand. It can also reduce costs for customer
support, for lost passwords and confusion
over multiple logins. Since few businesses
have the skills they need in-house to develop
an SSO solution, most turn to third-party
experts and consultants to accomplish the
task, and the cost can be surprising.

To control costs with SSO
implementations, it’s important to
look at a few key factors: the method
of implementation, which systems
will be integrated, which application
programming interfaces (APIs) will
support the integration, the architectural
approach, and what functionality is
expected from the integration. Each of
these factors has a different impact on the
technical approach, the skills required, the
management overhead, and the overall
complexity of the project. So, carefully
planning for these factors will help you
understand and control project costs.

METHODS OF IMPLEMENTATION

Let’s begin by exploring options for
implementing single sign-on (SSO).

When a visitor logs in to a website
with SSO, one system—the authority
system—validates the login information,
and then creates a logged-in session for
one or more additional systems, at the
same time. This can be accomplished in
a few different ways, including by using
a token, an encrypted password, or a
federated authority (including Active
Directory authentication). The method
of implementation will impact your
cost, and individual methods may or
may not be appropriate to your business
needs.

Tokens
When SSO is accomplished using a
token, the authority system creates a
randomly generated key that expires in
a short period of time. During that time,
the key can be used to authenticate into
a system. Any request that comes in with
this token is compared with the authority
system’s token of record. If it matches,
then the system recognises the user and
authenticates them.

Importantly, the key resides with the
login authority: it’s saved there temporarily,
and it’s also sent with the end user’s login
request to any additional systems that are
part of the SSO integration. The authority
system may do this distribution itself, or
one of the other involved systems—such
as a CMS—might be responsible for
distributing the token for the authority.

Part of implementing SSO in this
situation is negotiating the means of token
distribution, the order in which the token
should be distributed among multiple

Oprica_JWMM_V1-1-1.indd 2 22/03/17 10:26 am

Moore, Oprica and Gallerizzo

	 © Henry Stewart Publications 2050-0076 (2017)  Vol. 1, 1 1–12  Journal of Web Management and Marketing	 3

systems, and the duration of time for
which the token is valid.

Encrypted passwords
In the encrypted passwords method, after
a successful login, the authority system
returns the login information as a cookie,
and then moves the user’s browser through
each of the involved systems, so that a
similar cookie is generated for each of the
websites in the SSO system. To the user,
this usually looks like a short delay, like
loading a new page, before they see login
confirmation.

If all systems will allow this method,
using encrypted passwords can be a less
expensive way to implement SSO. This
is less secure than implementations using
the token method, since the process is
often visible in the URL (since query
strings are used to sequence login
through each system); and if the cookie is
intercepted during transmission or from
the user’s local machine, the credentials
can be reverse engineered. What’s more,
some vendors make the mistake of not
encrypting the password, which remains a
security threat even if the information is
sent over HTTPS.

Federated authorities
SSO can also be accomplished using a
federated authority, which is an officially
recognised login authority, such as
Facebook, LinkedIn, Gmail, or Active
Directory (within a Windows network
environment). Simply using one of these
authorities to authenticate your visitors is
considered an SSO integration since there
are multiple systems involved in creating the
authentication—but additional systems may
be tied together using this method, as well.

In SSO logins using a federated
authority, visitors are forwarded to
the third-party authority site to login.
After a successful login request, the
authority sends a token back to the
requesting site, and to any other systems

that are part of the SSO integration. In
effect, this scenario is similar to a token
implementation, except that only the
federated authority stores the user’s
password, which leaves responsibility for
security around the login to that party.

Some federated authorities may not
be appropriate for your business, based
on many factors, including your visitors’
expectations and perceptions around
privacy. Others, such as Active Directory,
will only work to support internal business
needs—such as authenticating employees
for intranets, authenticating management
of content within the CMS, or other
organisation-wide uses.

THE CHALLENGE OF INTEGRATING
DIFFERENT SYSTEMS

Regardless of the method that you
choose for your SSO implementation,
the challenge of SSO lies in integrating
different systems, which means
coordinating between systems with
different architecture and logic. Content
Management Systems (CMS), Association
Management Software (AMS) and
Customer Relationship Management
(CRM) systems are often built on different
platforms and programming languages
(Microsoft.NET, Java, PHP, ColdFusion,
JavaScript and so forth). As such, there are
a large number of possible combinations
of these systems, and each implementation
will present unique issues.

For example, many popular AMSs
(such as NetForum or iMIS) are built
on the .NET framework, which makes
them ideal for integration with other
.NET CMSs (such as Episerver or
Sitefinity). Integration is, of course,
possible with other CMS platforms
(such as Drupal or WordPress, which
are built on PHP; CommonSpot,
which is built on Coldfusion; or Adobe
Experience Manager, which is Java
based). In the absence of pre-built custom

Oprica_JWMM_V1-1-1.indd 3 22/03/17 10:26 am

Why single sign-on is so expensive and what you can do to reduce costs

4	 Journal of Web Management and Marketing  Vol. 1, 1 1–12  © Henry Stewart Publications 2050-0076 (2017)

modules, development of cross-platform
integrations may be more expensive.

The rise of standards-based
communication between systems
(XML and JSON data objects) has
begun to minimise or eliminate
complexities arising from cross-platform
communication, since most web services
tend to use platform-independent data
standards. If your CMS or AMS is built
on an older platform, or if the web
services API of either system is not well
developed, you will still encounter these
cross-platform issues.

For the purposes of your SSO effort,
this means that your development team
needs to have capabilities in the platforms
and programming languages involved
for each system that will be part of the
integration. For example, if your AMS
is the .NET-based NetForum and your
CMS is the PHP-based Drupal, then your
SSO team needs to have experience with
.Net, PHP, NetForum and Drupal. If your
internal team or your primary vendor
does not have this breadth of experience,
then you will need to find a vendor with
resources that complement those of your
existing team.

Ideally, at least some members of your
resulting team should have experience
across both systems, as this minimises the
risk of communication problems between
two teams with different expertise. If that
is not possible, you can also try to build
and mediate a collaboration between
two separate teams with complementary
expertise. Members of the team should
have the skills necessary to accomplish
two important tasks: (1) communicate
the login credentials between each of the
involved systems, and (2) customise each
system to store and reflect the logged-in
state, in both the database and the user
interface.

If you’re in a position to select the
systems you plan to integrate through
SSO, your implementation will be simpler

if the systems use the same platform and/
or programming language.

THE ADDED COMPLICATION OF
APPLICATION PROGRAMMING
INTERFACES

Beyond the platform and language that
it is built on, each software application
has a unique architecture, and the
application programming interface (API)
that interacts with this architecture is
different. An API is a collection of queries
and functions that makes it possible for
developers to retrieve information, initiate
a process, verify the results of a request,
and otherwise interact with a system.
Each API is different, so what can be
done in one system might not be possible
in another, making communication
between systems challenging. So, even
if your developers know a platform
and a programming language, they can
still be limited by the depth of their
understanding of the APIs involved in
your SSO integration.

Also, while some are more robust
than others, APIs are limited and may
not contain the necessary features to
perform particular tasks. Most of the time,
developers are limited to what the API
provides: they cannot create their own
queries from scratch. This means that in
order to achieve a particular business need,
if your needs are not supported by the
API out of the box, then developers might
need to come up with a creative, custom
solution. This can be expensive, as it may
require developing and testing several
solutions.

If you’re in a position to select the
systems you plan to integrate through
SSO, your implementation will be less
expensive if each of the systems has a
robust web services API available for
developers. To execute a basic SSO, the
API for your software products must be
able, at a minimum, to do the following:

Oprica_JWMM_V1-1-1.indd 4 22/03/17 10:26 am

Moore, Oprica and Gallerizzo

	 © Henry Stewart Publications 2050-0076 (2017)  Vol. 1, 1 1–12  Journal of Web Management and Marketing	 5

•	 Retrieve an existing user, based on
either username or ID,

•	 Create a new user, based on name,
email and password,

•	 Log a user in and out programmatically
(without the user making a physical
click), and

•	 Keep track of the user’s authenticated
state, as they move between pages.

The vendor for each of your systems
should provide all available API
documentation, including a list and
explanation of all the methods, data
objects and service endpoints available
to developers. This is especially critical
for your AMS and CRM software. The
information must be available early
in the development cycle, to allow
developers to properly plan and architect
the SSO solution.

Similarly, you will want to ensure
that your team has deep knowledge of
the APIs involved in your integration
and appropriate support for when they
encounter knowledge gaps or unexpected
obstacles. If your team doesn’t have expert
knowledge in each of the products you
are trying to integrate—which is common
and likely—then you will need to find
a vendor whose skills complement your
team’s. Otherwise, you may encounter
significant problems trying to get the two
systems to work together.

You’ll need experts on both systems
who have experience implementing
SSO, and who are willing to work
together. If you have multiple teams or
vendors involved in your efforts, there
is a significant risk that each team will
define its responsibilities more narrowly
than you’d expect. As a result, there will
likely be a ‘grey area’ of functionality
in the middle that each team assumes
the other one will take care of but in
the end neither one will. To avoid this
situation ensure that the team leads clarify
expectations and assign responsibility for

the work at both the project level and the
individual task level. Wherever necessary
make sure to step in, mediate and facilitate
a collaborative approach between the
multiple participants and create an
environment where they can succeed
together rather than becoming adversarial.

ARCHITECTING A SOLUTION

The architecture for your solution will
be developed based on the desired user
experience and implementation method,
combined with the specific features and
limitations of the APIs involved in your
integration. The other important factor
is deciding which system should be your
login authority.

In general, the login authority should
be whichever system is best suited to
handle user and member records, as well
as sales and transaction history. Most often,
this is your AMS or CRM. In contrast,
an application like a CMS would be less
suitable, since it is focused on content
delivery and not on your audience. If
your AMS or CRM is at the centre of
your SSO solution, it will be easier to
communicate information about members
and transactions between each system
in the integration, and you will spend
less time developing workarounds and
customisations to accomplish these tasks.

With this in mind, map out all of the
systems that need to be integrated. Select
which system should host the login and
account creation screens, in what order the
systems should authenticate, and where
users should be returned after a successful
login. Similarly, describe the logout
sequence, and where users should be
returned after logout. Determine session
duration and the methods for maintaining
a session between each system, and
describe error handling for each system if
authentication fails.

Describing all of these things in detail
creates a shared understanding of the SSO

Oprica_JWMM_V1-1-1.indd 5 22/03/17 10:26 am

Why single sign-on is so expensive and what you can do to reduce costs

6	 Journal of Web Management and Marketing  Vol. 1, 1 1–12  © Henry Stewart Publications 2050-0076 (2017)

development plan for your team, and
forms the basis of documentation for your
implementation. Your development team
will advise on additional points to cover in
the architecture, based on your requirements.

‘SIMPLE’ SSO AND MORE COMPLEX
INTEGRATIONS

The complexity of your SSO project will, of
course, influence the cost. In a simple SSO
implementation, two applications, such as
an AMS and a CMS, need to have a shared
authentication channel. That is, when a user
clicks the login button in either one of the
applications and submits their username and
password, they will automatically be logged
into both applications. At this point, the user
can perform tasks with both applications,
since they are authenticated into each.
The issues that we have discussed so far
are the main challenges with a simple SSO
implementation.

SSO implementations can become
more complex in many ways, and
sometimes multiple factors are involved.
Most of the time, your business goals
will extend beyond ‘simple’ SSO in at
least one of the following ways. You may
be integrating more than two systems,
using different login or logout methods
for specific systems, integrating data
and services between the systems, or
using non-standard session lengths or
authentication rules.

More than two systems
With each additional system that you
integrate, the SSO implementation
becomes more complex, because the
idiosyncrasies of each system and its
API compound upon the others. Also,
with more than two systems involved,
most likely your development team will
incorporate experts from multiple vendors.
With this larger team comes a greater need
for clear and open communications. It also
complicates scheduling, as it becomes more

important to synchronise work efforts.
The integration components for each
application should develop in parallel, so
that issues are discovered and mitigated
early in the project for each vendor.
Otherwise, when issues arise, one team may
be too deeply committed to their solution,
which can impact the broader integration.

As your business grows and changes,
you may find that you need to add
more systems to an existing SSO
implementation, or you may need to
change one of the systems. If the new
system is substantially different from what
was previously integrated, this can require
significant adjustments and revisions to
the existing solution. Sometimes the
developers of the original solution are
no longer available to answer questions,
which can introduce perplexing problems,
and can mean that the entire integration
needs to be reworked. For this reason,
we encourage clients to document
the methods and processes used in an
SSO implementation, along with issues
encountered and their resolutions, for
reference in future development efforts.

Different login or logout methods
For most businesses, one goal of SSO is
to unify the login and logout screens. In
implementations with several systems
involved, it’s possible for one of the
systems to be significantly limited or
out-of-step with the others. Most often,
this happens when a new application is
added to the integration after the initial
SSO implementation; and it’s more
likely to happen if the team working
on the new integration does not have
complete documentation on the existing
implementation, and early access to the
broader SSO team.

If one of your systems requires a
separate login screen from the main SSO
login shared by other systems, then there
should be special planning to address
this in the architecture, so that you can

Oprica_JWMM_V1-1-1.indd 6 22/03/17 10:26 am

Moore, Oprica and Gallerizzo

	 © Henry Stewart Publications 2050-0076 (2017)  Vol. 1, 1 1–12  Journal of Web Management and Marketing	 7

avoid a disjointed login experience—
where users are logged into some
systems but not in others. The planning
will involve new triggers in the broader
system to synchronise all the entry and
exit points so that clicking login or
logout from any screen in the system
works the same way.

Data and services integration
Companies often implement SSO as part
of achieving a bigger goal, such as unifying
an interface for registration or sales or
personalising the user interface. Making
this happen requires more robust systems
and APIs than simple SSO, as well as a
greater understanding of the APIs and
the systems involved. Common examples
of data and services integrations include
using your CMS to mimic AMS and
CRM functionality, such as:

•	 Registering, joining or renewing
•	 Managing an account profile or

password
•	 Creating a shopping cart
•	 Payment processing
•	 Displaying purchase history

Similarly, businesses often want to leverage
data stored within an AMS or CRM
to customise the website experience,
personalise content delivery or determine
roles or access to content. Examples of such
data include all profile fields and customer
data beyond the customer ID, such as:

•	 Name, address or profession
•	 Membership or registration type and

status
•	 Sales funnel flags
•	 Purchase history
•	 Group or list identifiers

If the AMS or CRM provides a front-end
interface for your visitors, then using
these interfaces will minimise your
costs. Otherwise, you will be re-creating

interfaces that already exist, and that are
designed to work seamlessly with the
application. Using these interfaces may
not be practical if they are difficult to
use, inaccessible, hard to customise or
otherwise lack features and functionality
that you want to offer.

If you want your visitors to use one
system to accomplish tasks that are
driven by another system, you need a
data and services integration. In such an
implementation, SSO is the starting point
for your project, but it will not accomplish
your goal. Development will need to
continue to retrieve and communicate the
necessary data, and further, to update the
data stored in each system as a result of
various transactions.

That is, in this situation, you’re not
processing just a login but individual
transactions as well. When someone makes
a purchase, the authority system has to
be notified, has to log and validate the
purchase, and has to return the results of
those operations. It may also need to send
along information that the user needs to
see and the companion system needs in
order to continue providing appropriate
information, such as compounding
discounts, showing related purchases
or preventing certain items from being
purchased according to business rules.

A data and services integration is
attractive because it keeps your website
visitor within the same ecosystem:
the visitor does not have to move
between two or more different systems
to accomplish their goals. It increases
development costs astronomically since
the website system has to act as a one-stop
shop, mimicking—indeed, almost
replicating—the features and functionality
of another system.

In effect, each of these additional
transactions beyond login requires the
same attention to detail as the primary
login transaction. This compounds the sets
of data that have to be communicated and

Oprica_JWMM_V1-1-1.indd 7 22/03/17 10:26 am

Why single sign-on is so expensive and what you can do to reduce costs

8	 Journal of Web Management and Marketing  Vol. 1, 1 1–12  © Henry Stewart Publications 2050-0076 (2017)

stored within each systems, and it likewise
increases the burden of keeping this
information in sync between each system.

When setting a budget and defining
requirements for an integration, make
sure you decide whether the integration
should only involve SSO, or whether
it should also involve data and services
integration. As described earlier, the data
and services integration may be much
more expensive. Each additional layer of
data and services increases the cost. The
ROI may be justified, but be aware of how
your business needs will impact the cost.

Non-standard session
or authentication rules
With security in mind, many applications
are designed to reflect standards for
session duration and authentication. For
example, most applications will log a user
out after 20 minutes of inactivity, and
most will prevent simultaneous logins
for a single user. If your business needs
require something different, particularly
if your requirements are not available
out-of-the-box for all of the applications
involved in your SSO integration, then
your developers will need to find a
creative solution to the problem that
works for all of the involved applications.

It’s important to identify and discuss
your requirements for session duration,
simultaneous sessions, ‘remember me’
functionality and similar issues early in the
process, so that your development team
can identify whether customisations are
required for any of the systems involved.

COMPLEX IMPLEMENTATION:
AN EXAMPLE OF THE ISSUES

In a recent SSO project that we worked
on at Fig Leaf, our client wanted to ensure
that purchases within the AMS would
be reflected in the user profile in the
CMS without requiring a login, so that
content access restrictions handled by the

CMS would update at the same time—
effectively allowing the visitor to access
the content that they had just purchased.
Importantly, the client desired for this
process to happen without requiring the
visitor to logout and login again. At this
point, you’ll recognise that this is a data
and services integration, built with an SSO
implementation.

This request makes a lot of sense from
a user experience perspective. When any
of us makes an online purchase through
Amazon, for example, we expect that this
purchase will appear in our purchase history
immediately; and if we have purchased
online content, we expect for it to be
delivered to us as a result of our purchase.
In most situations where we experience
this process as visitors, we are usually
visiting e-commerce websites, where the
content presentation and the purchasing are
executed on the same software.

In contrast, the client making this
request is a membership association, and
the purpose of their website is twofold:
sell and renew memberships and deliver
content. They rely on two separate
software applications to meet these needs.
To accomplish sales, they used their AMS.
To accomplish content delivery, they
used their CMS, which offers a more
powerful publishing interface that includes
personalised marketing and role-based
content delivery. Using a single application
for both purposes was not an option for
our client. So, these two systems needed to
be integrated to reach the client’s goals.

Since the client had been using the
AMS for substantially longer than the
CMS, and there were several other
business processes hooked into it, the
software had been customised over
the years. Knowledge about these
customisations was dispersed over several
teams of consultants and internal team
members, some of whom were no longer
available, and documentation was sparse.
As a result of this, it was important that

Oprica_JWMM_V1-1-1.indd 8 22/03/17 10:26 am

Moore, Oprica and Gallerizzo

	 © Henry Stewart Publications 2050-0076 (2017)  Vol. 1, 1 1–12  Journal of Web Management and Marketing	 9

the AMS remain the interface for both
authentication and purchasing, as well as
the authority for all member data. So, we
worked with the current team of AMS
consultants to ensure that after each update
to a member record—whether initiated by
an online transaction or a manual record
update—the AMS would ping the CMS
to retrieve the updated member record.

Initially, although the CMS received
the ping to retrieve the record, records
were not being updated. After a diagnostic
working session with the AMS team,
we discovered that the ping to us was
being delivered too soon in their internal
business logic. By postponing the ping, this
issue was resolved.

Then we discovered a bigger problem:
with the ping to update, we could retrieve
the member record and all of the relevant
fields, and update the corresponding user
record on our end. User access was not
affected by this update. We could see that
the roles and permissions were being
updated for the user in the database, but
the user was still unable to access their
newly purchased content on the front-end.
To actually update content access, the user
had to logout and login again, or wait for a
seemingly arbitrary period of time for the
changes to apply. Recompiling the website
would also resolve the problem, but was
clearly an undesirable solution due to the
resulting period of system downtime.

At this point, despite our advanced
knowledge of the CMS, we had to
directly consult the CMS support team.
In discussions with top tier support, we
learned two things. First, the disconnect
that we were witnessing between user roles
and permissions, and actual user access to
content, was caused by a basic architecture
principle of the CMS: at login and at site
compilation, the CMS effectively builds
an individualised sitemap of content for
each user, showing what they may or may
not access. Secondly, the use case that we
were trying to solve was specifically not

supported by the CMS. In fact, the CMS
had been architected to prevent this use
case, as part of its security measures.

Despite this, in the interest of the
client, the CMS support team worked
with us on several possible approaches to
resolve this issue. Together, our two teams
explored several different solutions to the
problem until we found one that worked
in all of our test scenarios in the staging
environment. There was a great deal of
time and effort involved in architecting a
solution. For example, at one point, the
CMS support team shared with us an API
call designed for diagnostic purposes only.
When we realised the effect of the API call,
we discovered that we could embed this
call during our member record retrieval
process, and it would produce the desired
mid-session update of user content-access
sitemaps. The call produced a sitemap for
each user in the CMS database, so it had
the potential to bog down the system in
significant ways. When we discussed our
idea and our concerns with the CMS
support team, they worked with their
engineers to develop and share a variation
of this API call that would create a sitemap
for only one user record at a time.

While this produced a solution for the
client, it required a significant investment
of resources from the client and three
teams of experts, as well as daily progress
calls with detailed communication and
documentation, several working sessions,
and the development and testing of multiple
possible solutions. This requirement
was only one part of a larger and more
complicated SSO implementation, but we
share it to illustrate how seemingly simple
or obvious requirements can, in fact, be
deeply complex and resource-intensive.

SECURITY

As you plan your SSO solution, it is
important to keep in mind a few concepts
regarding your system’s security. This

Oprica_JWMM_V1-1-1.indd 9 22/03/17 10:26 am

Why single sign-on is so expensive and what you can do to reduce costs

10	 Journal of Web Management and Marketing  Vol. 1, 1 1–12  © Henry Stewart Publications 2050-0076 (2017)

involves not only satisfying the technical
concerns your IT department might
have, but also managing expectations for
your members and users about what a
secure login actually looks like and what
restrictions they should be aware of.

From a high level, single sign-on
represents a single point of entry into two
or more systems. While this provides great
value, ease of use and reduced headaches
regarding the login process, it also represents
a streamlined point of attack into your
system. Essentially, the threat of compromised
account credentials is magnified in
proportion to the number of systems that are
connected by that one login screen.

Fortunately, simply following the few
techniques outlined below will go a long
way towards ensuring a comfortable
baseline of security for your SSO solution:

•	 Enforce strong passwords—
require alphanumeric and symbol
combinations, and educate users to not
base their passphrase on obvious words.

•	 Limit session duration—ideally, a
logged-in user should be automatically
logged out after 20 minutes of inactivity.

•	 Encrypt passwords and sensitive data as
they are communicated between sites
and service endpoints—make sure your
developers are using HTTPS instead
of HTTP, and make sure sensitive data
isn’t visible in browser cookies or url
parameters.

•	 Restrict power user roles—do not
automatically grant Edit, Delete or
Admin rights to any of your systems
when a user or member creates an
account. Grant only basic viewing
permissions if possible, and only add
the preceding rights manually to
pre-selected, trusted users.

ANALYTICS

When you set up your SSO integration,
you may also wish to set up analytics to

monitor user success, and to leverage data
available through complex integrations.
Exactly how you implement your analytics
will vary, depending on the analytics
product that you use, the architecture for
your implementation, and the flow that
you have designed through these processes.

To track metrics on your SSO
implementation, the simplest thing to
do is add event tracking. Event tracking
basically follows how often people click
on important buttons or links. Usually,
people set up event tracking for links
that represent conversion: for many
sites, this is a click to login, a click to
create an account, or a click to purchase
something. So, for example, if you set up
event tracking on the login buttons on
your site, you’ll be able to see how often
people click each login button, and where
they are when they click it. You’ll also
be able to see if this changes over time.
If authentication takes place on a system
other than your website, you’ll be able to
see how many people leaving the site are
actually leaving to log in. With advanced
analytics tools, you can follow whether
they come back to you after logging in.

Sometimes, your site may have clear
paths defined for specific tasks. For
example, you may want new visitors to
land on the home page, see and click on a
promotion for creating an account (taking
them to a page talking about how great
it is to have an account), and then click
on the button to create an account. If you
are keeping users on your site throughout
the account creation process, then you can
continue to track all the way through to
successful account creation.

Wherever there’s a clear path like
this, it makes sense to add a second form
of tracking, by defining a conversion
funnel. You can define a conversion
funnel in many analytics software
packages, or using separate conversion
optimisation plugins. Once this is set up,
you’ll be able to see if there are points

Oprica_JWMM_V1-1-1.indd 10 22/03/17 10:26 am

Moore, Oprica and Gallerizzo

	 © Henry Stewart Publications 2050-0076 (2017)  Vol. 1, 1 1–12  Journal of Web Management and Marketing	 11

in the account creation process where
users drop off, so that you can optimise
essential workflows.

Finally, if you have a complex data
and services integration, you have the
opportunity to track how different
audience segments behave on your site,
using advanced analytics customisation.
With what you learn, you can further
personalise content delivery for these
audiences, and continue to improve
both funnels and messaging for these
groups.

THE ROUNDUP

As you can see, requirements, software
and API limitations, team experience, and
team communication can make or break
your SSO project. Here is a short checklist
to keep you on track.

Important points for businesses planing
an SSO integration:

•	 When selecting the systems you plan to
integrate, look for applications that use
the same platform and/or programming
language, and that have a robust web
services API.

•	 For each of the applications involved,
obtain all available API documentation,
early in the development cycle.

•	 Make sure your development team
has capabilities in the platforms and
programming languages involved
for each system that is part of the
integration. Also be sure that your team
has experience with implementing SSO
using the applications involved in your
implementation. If not, then find and
hire the complementary expertise that
your team needs.

•	 When setting a budget and defining
requirements for an integration,
make sure you decide whether the
integration should only involve SSO, or
whether it should also involve data and
services integration.

•	 Where reasonable, using the built-in user
interfaces for specialty applications like an
AMS or CRM will minimise your costs.

•	 If you plan to phase in data and services
integration, inform the team, since this
may influence the architecture of your
solution.

•	 When defining the requirements for
your integration, be careful, detailed
and specific. Identify which features
and functionality are critical, and
prioritise others, in the event that some
features conflict with the options for
implementing others.

•	 Identify which system should be
your login authority, and map out
the architecture of the integration, so
everyone is building towards the same
solution.

Critical items for business executing an
SSO integration:

•	 Make sure the development teams
have access to a sandbox/testing
environment in which to develop
the SSO solution. Avoid making
any changes to the production
environment until the solution has
been thoroughly tested through
multiple use cases, and you’re certain it
works as expected.

•	 Facilitate transparent, detailed, early and
regular communication among your
team—particularly among the team
leads for each application. It’s critical
that your team is willing to work
together, and that any issues in this
regard are identified and mitigated early
in the process.

•	 Make sure that the team leads clarify
expectations and assign responsibility
for the work at both the project level
and the individual task level, particularly
when multiple teams or vendors are
involved in the project.

•	 Ensure that each team is working
towards a solution together, on the

Oprica_JWMM_V1-1-1.indd 11 22/03/17 10:26 am

Why single sign-on is so expensive and what you can do to reduce costs

12	 Journal of Web Management and Marketing  Vol. 1, 1 1–12  © Henry Stewart Publications 2050-0076 (2017)

same schedule, so that the approach can
be adapted to resolve issues as they are
discovered. If one team is finished when
the other is starting, it will be more
difficult to make needed changes.

•	 Use your AMS or CRM as the login
authority, when feasible, to facilitate
development of data and services
integrations.

•	 Thoroughly document the architecture
of your SSO implementation and
related data and services integrations,
for future development efforts with
new team members.

•	 Develop documentation as you work,
so that if another team needs to
step in, they can understand and use
existing work.

CONCLUSION

SSO can be a costly and intimidating
project to undertake, because there are so
many variables in each solution. Knowing
the most costly aspects of an SSO project,
you are in a better position to prioritise
your goals and make your project
manageable, affordable and successful.

Oprica_JWMM_V1-1-1.indd 12 22/03/17 10:26 am

